

Chemical Gear Pumps

G

Innovative Fine Ceramic Gear Achieves Stable Non Pulsatile Quantitative Injection

638

The Heart of Industry

GX Gland Packing or Mechanical Seal

Hard and Soft Fine Slurries Can Be Handled

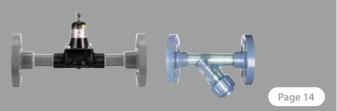
GM

Seal-Less (Magnetic Drive)

No Liquid Leaks ideal for handling chemical liquids

GM-V

Dedicated for Corrosive Chemical Solutions


Non Metallic Construction with Corrosion Resistance

Optional Accessories

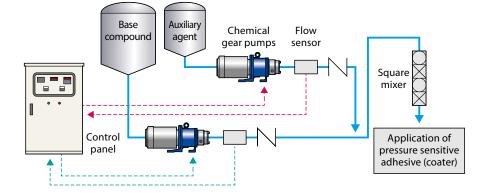
Non Pulsatile Quantitative Injection System Components

Have a Proven Track Record in a Wide Range Integrated Production From Piping Units to Control Panel Design

IWAKI Proprietary Internal Gear Pump Equips With Fine Ceramic Gears

Without detracting from any of the advantages of conventional internal gear pumps, abrasion resistance, chemical resistance, low-viscosity characteristics and sealing characteristics have been remarkably improved.

Our internal gear pumps achieves pulsation-free operation even transferring liquid with low-high viscosity and fine slurries.^{Note}


In addition to the gland packing/mechanical seal type (Model GX), magnetic drive sealless type (Model GM) is available as the standard product for an expanded range of uses.

Note: To perform constant flow Injection, use this pump with a PFC controller, magnetic flowmeter, inverter and back pressure valve.

Applications (GX/GM)

- Non pulsatile quantitative injection of animal glue in copper foil manufacturing process.
- Quantitative transfer of magnetic slurry liquid.
- Quantitative transfer of paint and dye slurry liquid.
- Quantitative injection of coagulant.
- Quantitative injection of paper strength enhancer.
- Non pulsatile quantitative transfer of fine slurry of electronic materials.
- Ammonia water/urea water spray in flue gas denitration equipment such as cleaning factory.
- Transfer of perfume such as detergent.
- Transfer of cleaning solvent for metal parts, electronic parts etc.
- Solvent-based adhesive transfer.
- Chemical liquid transfer for various processes. (caustic soda, 98% sulfuric acid, nitric acid etc.)
- Coating of positive and negative electrode materials for rechargeable lithium-lon battery manufacturing.

This photo is for illustrative purposes only.

Capable of Dealing With a Wide Range of Industrial Processes Which Grow in Sophistication

The fine ceramic gears provide longer life and higher performance than our conventional internal gear pumps.

High Levels of Durability

Fine ceramic gears provides superior abrasion resistance and chemical resistance than conventional gear pumps, prevents "galling" and "seizing" when the pump operates at a high speed. Main materials are stainless which provides of corrosion resistance and thermal resistance. Superior anticorrosive materials such as stainless, ceramic, PTFE and carbon are used in liquid ends so that all sorts of chemical liquids can be handled.

Ceramic vs stainless steel gear comparison

		Corrosion resistance	Thermal resistance	Seizing resistance	Exfoliation resistance	Abrasion resistance	Coefficient of friction	Impact resistance
Fine ceramic g	ear	✓ Excellent	✓ Excellent	✓ Excellent	✓ Excellent	✓ Excellent	✓ Excellent	O Poor
Matal	Heat-treated	O Poor	✓ Excellent	🗸 Average	🗸 Average	🗸 Average	✓ Excellent	✓ Excellent
Metal gear	Hard coated	🗸 Average	✓ Excellent	🗸 Excellent	O Poor	✓ Excellent	🗸 Average	🗸 Average

Quiet Liquid Transfer with Less Pulsation

Without the pulsation that is common to the reciprocating pump and the gear pump for general uses, liquid is transferred quietly and smoothly, not agitating or generating foam/bubbles.

Wide Range of Viscosity Liquids and Fine Slurries Can Be Handled

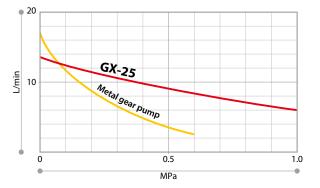
The fine ceramics available in two types. SiC (silicon carbide) ceramics, which is ideal for handling low viscosity liquids, and Si3N4 (silicon nitride) ceramics, which is ideal for handling high viscosity liquids. The GX type can handle hard and soft fine slurries.

• Do not use the GM type for slurry applications.

High Self -Priming Ability

Because the suction port is at the top of the pump, the pump chamber is filled with liquid when pump stops. The self-priming capacity is enhanced at re-start.

The height of self-priming varies depending on the liquid quality, liquid temperature, piping conditions. Please contact us for details.


Seal-Less Design (GM type)

Magnetic drive seal-less pumps are free from leakage problems and the need for seal replacement.

Improved Performance

Performance has been noticeably improved. Ceramic gears make it possible to reduce spaces between parts, therefore outperforming conventional metal gear models. The pump is far less subject to declining output even under high pressure.

Simple Device Configuration Easy Maintenance

By simply combining a PFC controller, magnetic flowmeter, inverter, and back pressure valve, it is possible to inject a constant flow with less pulsation even if there are fluctuations in the level of the suction tank or load fluctuations on the discharge side.

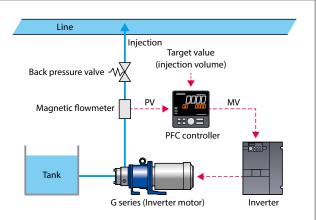
• Please refer to the optional accessories (page 11) for the each device.

Constant Flow Injection with Excellent Controllability

Regardless of the temperature change, viscous liquid can be handled at accurate flow rate, which cannot do with other pumps. As the output is linearly related to rpm, the flow rate is easily controlled by changing motor speed. The pump achieves fixed injection with the rangeability 10 times greater than conventional metering pumps.

Rangeability 1:100

• To perform constant flow Injection, use this pump with a PFC controller, magnetic flowmeter, inverter and back pressure valve.



Cost Reduction

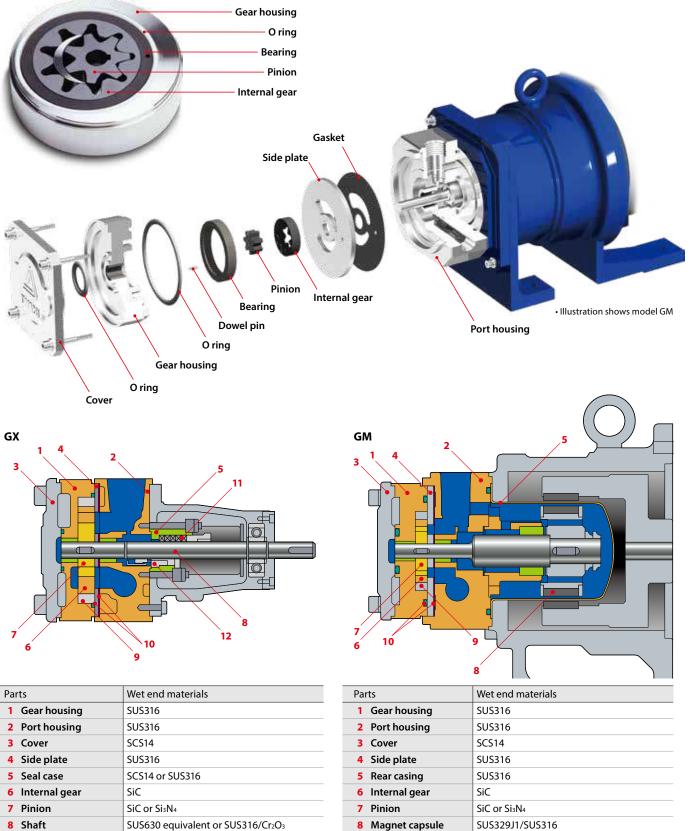
Fine ceramics have excellent abrasion resistance so there is almost no wear on the parts and they have a long life. In addition, the pump performs pulsation-free operation without pulsation suppression accessories such as air chambers. Compared to reciprocating pumps, fewer components, reduce initial and total costs.

We provide an long term supply products according to your needs, from designing and manufacturing piping units and control panels to inspection, shipping, and on-site adjustment.

The Pulsation Free injection system consists of a G series chemical gear pump, PFC controller, magnetic flowmeter, inverter and back pressure valve.

The pump discharge volume is measured by an magnetic flowmeter, and this value is converted into an electrical signal and sent to the PFC controller.

The PFC controller compares the measured value with a target value (injection volume) and controls the inverter to eliminate any deviation.


The inverter keeps the discharge volume constant by increasing or decreasing the pump speed according to the output of the PFC controller.

 It can be controlled with equivalent control devices (such as PLCs) other than PFC controllers.

Please contact us for a recommended piping diagram.

Construction and Materials

8 Magnet capsule

10 Gasket/O ring

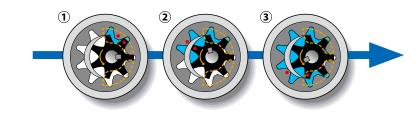
9 Bearing

Carbon or SiC

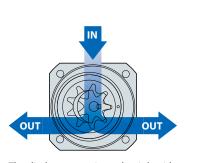
PTFE

Pump Identification

	G	X	- 12	S	K	С	G	-	02	Μ	Α	- J	
	1	2	3	4	5	6	7		8	9	10	11	
1 Pump series		7 S	haft seal							10	Motor s	pecifications	
G Series			G: Gland p	acking	seal						Blank	TEFC, indoor type	
			W: Gland p	acking	g seal (N	Water i	njectio	n typ	e)		A : Inc	reased safety, outdoor type Note3	
2 Pump type			M: Mechar	ical se	al (Carl	oon/Al	2 O 3)				B:Exp	losion-proof, outdoor type	
X : Gland packing or			C: Mechan	ical sea	al (SiC/	SiC)					C:Tot	ally enclosed fan cooled, outdoo	r type
mechanical seal			R: Rare ear	th mag	gnetic d	drive							
M : Magnetic drive										11	Special	specifications	
5		8 N	lotor outpu	t							J: Eq	uipped with heat jacket	
3 Pump size			02 : 0.2kW								T: Eq	uipped with torque limiter (GX)	
12 : 1.0mL/rev			04 : 0.4kW								JT : Eq	uipped with heat jacket	
15 : 3.3mL/rev			07:0.75kW	1							an	d torque limiter (GX)	
25 : 12.8mL/rev			15:1.5kW								S : Ot	her special specifications	
32 : 25.0mL/rev			22 : 2.2kW										
			37 : 3.7kW										
4 Housing material													
S : Stainless steel		9 N	lotor type ^N	ote2									
		I	M : 4P mot	or									
5 Gear materials ^{Note1}		:	S : 6P mot	or									
K : SiC/SiC			F: 4P Inve	rter m	otor								
N : Si ₃ N ₄ /SiC			E: 6P Inve	rter m	otor								
		(G3 : Geared	moto	r (Redu	ction r	atio 1/3	3) GM	-D/GN	1-DP			
6 Bearing material		(G5 : Geared	moto	r (Redu	ction r	atio 1/	5) GM	-D/GN	1-DP			
C : Carbon			H3 : Inverte										
K : SiC			H5 : Inverte	5		•	uction	ratio	1/5) G	iM-DZ/	GM-DP		
		2	X: Special	specif	ication								


Note1: Materials of the pinion/internal gear. The pinion material CFRPEEK is also possible. Note2: For IE3 motors of 0.75 kW or more, select F, E, H3, H5 when using the inverter. Note3: Inverter motor can not be selected.

Specifications


Model	Discharge per revolution	Max. speed	Max. discharge pressure	Temp. range	Viscosity range	Conne	ctions
Model	mL/rev	min⁻¹	MPa ^{Note1}	°C	mPa•s ^{Note3}	IN	OUT
GX-12	1.0					RC^{1}_{2}	RC_{8}^{3}
GX-15	3.3	1800	1.0	0 to 150	0.5 to 10000	RC ¹ / ₂	RC ³ / ₈
GX-25	12.8	1800	1.0	010150	0.5 10 10000	RC1	RC¾
GX-32	25.0					RC1 ¹ ⁄ ₄	RC1
GM-12	1.0		0.5			RC ¹ / ₂	RC ³ / ₈
GM-15	3.3	1000	0.5	0 to 80	0.5 to 1000	RC ¹ / ₂	RC ³ / ₈
GM-25	12.8	1800	0.7	(0 to 50) ^{Note2}		RC1	RC¾
GM-32	25.0		0.7		0.5 to 700	RC1 ¹ ⁄ ₄	RC1

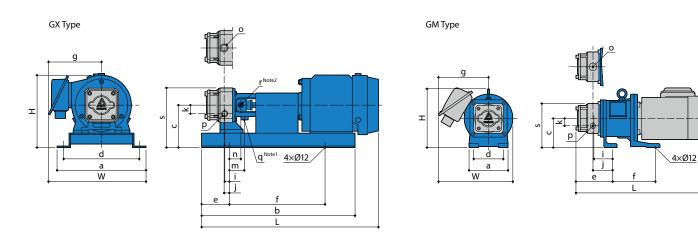
Note1: The valnes depending on the motor speed and liquid viscosity. Please contact us for details. Note2: The maximum liquid temperature when transferring liquid of 200 mPa·s or more with GM is 50°C. Note3: Please contact us for the motor speed and motor output suited to the viscosity of your liquid.

Operating Principle

- (1) A pinion (drive gear) coupled with a shaft supported by two bearings meshes with an internal gear (driven gear) whose periphery is supported by a strong bearing.
- (2) Liquid is transfered by a change in the capacity of this meshed portion. In the suction process, the gears are disengaged and a space defined by the two gears and the casing expands. The liquid is drawn into the space by the negative pressure generated.
- (3) In the discharge process, their teeth begin to mesh and space defined by the two gears and the casing is reduced to force out the liquid.

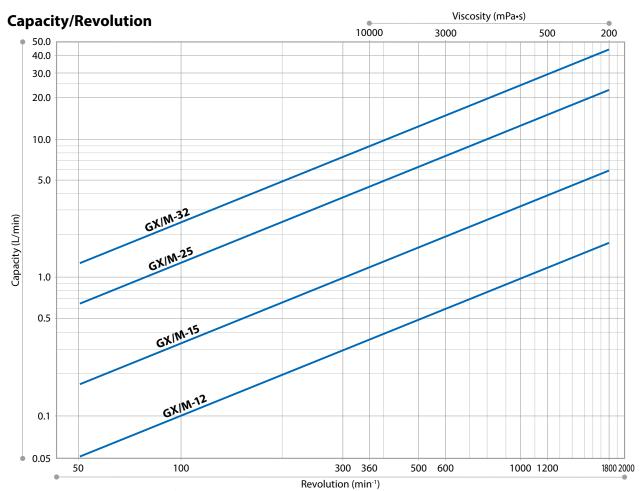
The discharge port is on the right side when viewed from the front of the pump, also available selected the left side as a special order.

Standard Pumps Selection Table (50/60Hz)

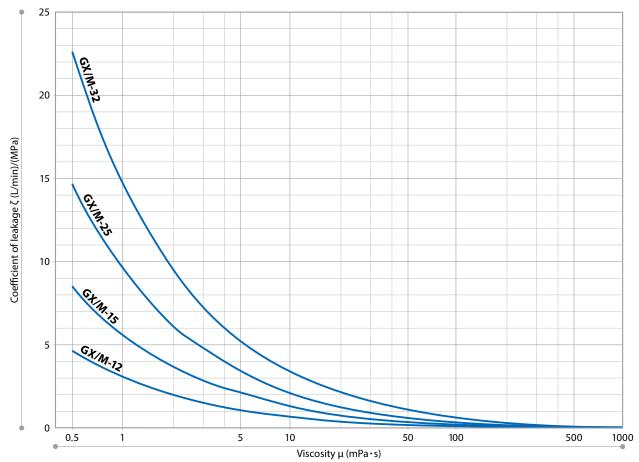

Model	Viscosity range mPa•s	Max. discharge pressure MPa	Max. discharge capacity L/min	Max. speed min ⁻¹		Motor
	0.5 ≤ viscosity < 1	0.3/0.36				
	1 ≤ viscosity < 9	0.47/0.57	1.4/1.7	1410/1700		4P, 0.2kW
	9 ≤ viscosity < 200	4.0/4.0	-			
GX-12	200 ≤ viscosity < 1000	1.0/1.0	0.9/1.1	920/1110		6P, 0.2kW
	1000 ≤ viscosity < 3000	07/07	0.5/0.6	500/600		4P, 0.4kW, 1/3
	3000 ≤ viscosity ≤ 10000	0.7/0.7	0.3/0.36	300/360		4P, 0.4kW, 1/5
	0.5 ≤ viscosity < 1	0.54/0.65				
	1 ≤ viscosity < 9	0.7/0.7	4.7/5.6	1410/1700		4P, 0.2kW
CV 15	9 ≤ viscosity < 200	10/10	-			4P, 0.4kW
GX-15	200 ≤ viscosity < 1000	1.0/1.0	3.0/3.7	920/1110		6P, 0.4kW
	1000 ≤ viscosity < 3000	0.7/0.7	1.7/2.0	500/600		4P, 0.4kW, 1/3
	3000 ≤ viscosity ≤ 10000	0.7/0.7	1.0/1.2	300/360		4P, 0.4kW, 1/5
	0.5 ≤ viscosity < 9	0.7/0.7	100/010			4P, 0.75kW
	9 ≤ viscosity < 200	1.0/1.0	18.0/21.8	1410/1700		4P, 1.5kW
GX-25	200 ≤ viscosity < 1000	1.0/1.0	11.8/14.2	920/1110		6P, 1.5kW
	1000 ≤ viscosity < 3000	0.7/0.7	6.4/7.7	500/600		4P, 0.75kW, 1/3
	3000 ≤ viscosity ≤ 10000	0.7/0.7	3.8/4.6	300/360		4P, 0.75kW, 1/5
	0.5 ≤ viscosity < 9	0.7/0.7				
	9 ≤ viscosity < 100		35.2/42.5	1420/1710		4P, 2.2kW
	100 ≤ viscosity < 200					4P, 3.7kW
GX-32	200 ≤ viscosity < 500	1.0/1.0	23.0/27.7	950/1140		6P, 2.2kW
	500 ≤ viscosity < 1000	-				
	1000 ≤ viscosity < 3000		12.5/15.0	500/600		4P, 1.5kW, 1/3
	3000 ≤ viscosity ≤ 10000	0.7/0.7	7.5/9.0	300/360		4P, 1.5kW, 1/5
		0.30/0.36	1.4/1.7	1410/1700		General purpose motor
	0.5 ≤ viscosity < 1	0.38	1.8	1800		Inverter motor
	1 cuinersitu c 0	0.4/0.48	1.4/1.7	1410/1700	40.0.2444	General purpose motor
GM-12S 🗌 🔤 R	1 ≤ viscosity < 9	0.5	1.8	1800	4P, 0.2kW	Inverter motor
	9 ≤ viscosity ≤ 200	0.5/0.5	1.4/1.7	1410/1700		General purpose motor
	$9 \leq viscosity \leq 200$	0.5	1.8	1800		Inverter motor
	200 ≤ viscosity ≤ 1000	0.5	1.2	1200	6P,	0.2kW (Inverter motor only)
		0.5/0.5	4.7/5.6	1410/1700		General purpose motor
	0.5 ≤ viscosity < 9	0.5	5.9	1800	40.0.2444	Inverter motor
GM-15S 🗌 🔤 R	0 < viceosity < 200	0.5/0.5	4.7/5.6	1410/1700	4P, 0.2kW	General purpose motor
	9 ≤ viscosity < 200	0.5	5.9	1800		Inverter motor
	200 ≤ viscosity ≤ 1000	0.5	3.9	1200	6P,	0.4kW (Inverter motor only)
	0.5 ≤ viscosity < 9	0.7/0.7	18.0/21.8	1410/1700	4D 0 751/W	Commercial power supply direct drive operation
	$0.5 \leq \text{VISCOSILY} < 9$	0.7	23	1800	4P, 0.75kW	Inverter motor
GM-25S 🗌 R	9 ≤ viscosity < 200	0.7/0.7	18.0/21.8	1410/1700	4P, 1.5kW	Commercial power supply direct drive operation
	2 ≥ viscosity < 200	0.7	23	1800	-т, т.экw	Inverter motor
	$200 \le viscosity \le 1000$	0.7	15.3	1200	6P,	1.5kW (Inverter motor only)
	0.5 < viscosity < 30		35.2/42.5	1420/1710		Commercial power supply direct drive operation
	0.5 ≤ viscosity < 30	0.7/0.7	45.0	1800	4P, 2.2kW	Inverter motor
GM-32S□□R	20 - viscosity - 200	0.7/0.7	35.2/42.5	1420/1710	4D 3 71-14/	Commercial power supply direct drive operation
	30 ≤ viscosity < 200		45.0	1800	4P, 3.7kW	Inverter motor
	200 ≤ viscosity ≤ 700	0.7	30.0			2.2kW (Inverter motor only)

For handling liquids containing slurry, sticky liquids, liquids that harden easily, etc., select a model with a torque limiter. Please contact us for information on pumps with torque limiters.
 Max. Pressure varies depending on pump size, viscosity of transferred fluid, and motor used. Please contact us separately for combinations other than the standard model selection table.
 The maximum liquid temperature when transferring liquid of 200 mPa-s or more with GM is 50°C.

Install strainers and relief valves to protect a pump. The size of a strainer mesh depends on liquid. For clean water, 150 mesh is recommended. Please contact us


for details. The recommended gear material code is K(SiC/SiC) for a viscosity below 200 mPa-s and N(Si3N4/SiC) for above 200 mPa-s. However, in the case of gear material N (Si3N4/SiC), the maximum pump speed is 1200 min⁻¹.

Dimensions in mm



Model	Motor	w	н	L	а	b	с	d	e	f	g	i (Discharge)	j (Suction)	k	m	n	о	р	q ^{Note1}	r ^{Note2}	s	Mass kg
	02MC	264	241	460							138											20
	04MC	701	228.5	481			111.5				155										160.5	21
GX-12S -15S	02SC	201	220.5	401	252	440		222	80	280	133	13	14	24	41	27.5	Rc½	Rc¾	Rc ¹ / ₈	Rc ¹ / ₈		21
	04SC	285	215	499			120				159										169	24
	04G□C	252	200	547			140				120										189.5	24
	07MC	301	227	570			140.5				168										203	37
GX-25S	15MC	306	242	585	266	570	140.5	236	100	260	173	8	9.5	30	49.5	36	Pc1	Dc ³ /	Rc¼	Rc ¹ / ₈	205	42
GV-200	15SC	318	281	648	200	570	151	250	100	500	185	0	9.5	50	49.5	50	RCI	RC/4	RC/4	RC/8	213	52
	07G□C	272	201	670			170.5				139										233	51
	22MC	355	300	740							185											86
GX-32S	37MC	366	311	759	340	740	170	300	115	510	196	0	0	37	80	60	Rc1¼	De1	Rc ³ / ₈		247	99
GV-222	22SC	500	511	759	540	740		500	115	510	190	0	0	57	80	60	RCI/4	RCI	RC/8	RC/4		99
	15G□C	340	320	774			198				149										275	93
GM-12S	02M/FC	230	193	400	128	_	95	98	121	141	150	65	66	24	_	_	Pc ¹ /	Rc ³ / ₈		_	144.5	25
GIVI-125	02EC	245	195	421	120	_	95	90	121	141	165	05	00	24	_	_	nc/2	nc/8	_	_	144.5	27
	02M/FC	230	193	400					121		150											25
GM-15S	04M/FC	245	195	421	128	-	95	98	121	141	165	65	66	24	-	-	Rc½	Rc¾	-	-	144.5	28
	04EC	265	235	432					131		105											32
	07M/FC	265	235	466	160		120	120	165	245	165	83.5	85								182.5	43
GM-25S	15M/FC	278	235	533	100	-	120	120	105	245	178	65.5	65	-	-	-	Rc1	Rc¾	-	-	102.5	50
	15EC	310	275	600	205		146	160	169	224	185	87.5	89								208.5	70
	22M/FC	310	275	621							185											80
GM-32S	37M/FC	221	207	651	205	-	146	160	190	224	106	91	91	-	-	-	Rc1¼	Rc1	-	-	223	91
	22EC	321	287	688							196											96

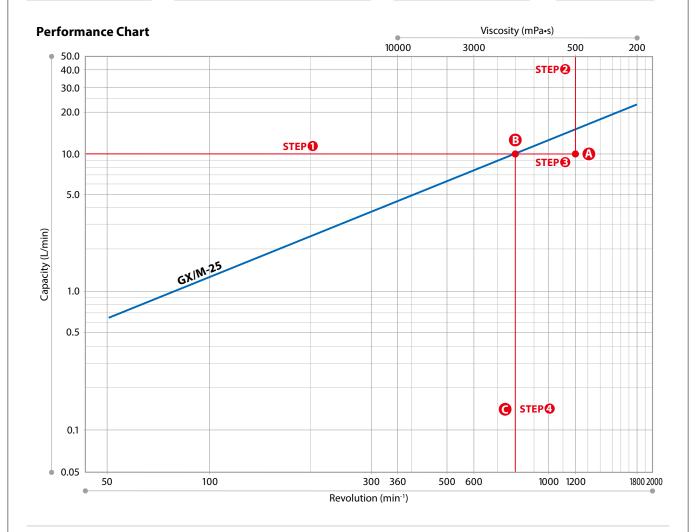
• All dimensions are for Mitsubishi Electric outdoor motors. Dimensions may differ if other motors are installed. Note1: "q" is the diameter of the drain port. Note2: "r" is the diameter of the water inlet. These dimensions are applied only to gland packing seals (water inlet type).

Viscosity/Leakage Coefficient

How to Use the Graph

The chart on the left shows the output at a discharge pressure of 0 MPa. The output changes in proportion to min-1, but min-1 should be reduced when pumping higher viscous liquid. Knowing required output and viscosity, the proper pump/motor min-1 can be selected as in the following example.

Mark the value of your required output (10 L/min) on the scale on the left, and draw a horizontal line to the right.


Mark the value of your viscosity on the scale at the top and draw a line downward. In the event your viscosity falls in the middle of two scale lines, select the line on the left (the higher value). Extend the intersected point to the left horizontally until intersecting the first pump line. This point specifies pump.

STEP

Draw a downward line from ³ to specify motor rpm⁶.

STEP

G

When discharge pressure rises

The lower the viscosity, as discharge pressure rises, the lower the output will be. You can estimate the actual output, in case of a change in viscosity or discharge pressure, from the following formula.

$$\zeta = K \times \mu^{-0.65} - (1)$$

Oc = q × N/1000 - ζ × Δ P

For the value of the coefficient of leakage in formula (1), stee the viscosity-leakage coefficient graph.

• When handling low viscosity liquids (100 mPa•s or less) at low speeds using a geared motor, the discharge rate will be lower than that calculated by the formula. Please contact us for information.

- Qc: Estimated output (L/min)
- q: Output per revolution (mL/rev) N: min-1
- ΔP: Effective differential pressure (MPa) ζ: Coefficient of leakage (L/min)/(MPa)
- μ: Viscosity (mPa•s)
- K: Constant

GX/M-12: K=3 GX/M-15: K=5.5 GX/M-25: K=9.5 GX/M-32: K=15

For slurries

For soft slurries, reduce rpm by 75%. For hard slurries, reduce rpm by 50%. In principle, only slurries of less than 10 μm in diameter can be handled.

• GM type pumps cannot handle slurries.

Highly Corrosion Resistant Sealless and Non-Metal Construction

Safely Handles Most Corrosive Liquid Chemicals, Including Acids and Alkalis

GM-V Dedicated for Corrosive Chemical Solutions

While retaining all the features of the GM type, it does not use any metal materials in the liquid wet ends.

• To perform constant flow injection, flow control using a PFC controller, magnetic flowmeter, inverter and back pressure valve is required.

Applications (GM-V)

- Automatic injection of coagulant at a constant mixing ratio of coagulant in low flow/high head chemical lines.
- Quantitative transfer of paper-making dye.
- Transfer of sodium hypochlorite.
- Pulsation-free metering, injection and transfer of chemical solutions.
- Transfer of various acids, alkalis and chemical solutions.

Highly Corrosion-Resistant Design

Liquid wet ends are made of PVC, silicon carbide and fluorine resin, all of which are resistant to most acids and alkalis. The pump uses no seals, which eliminates the risk of leaks.

Lightweight and compact

Close coupled to its motor, eliminating the need for intermediate coupling and making the assembly both lightweight and compact. Space-saving design makes it suitable for built-in pump systems.

Pump Identification

	GM	-	15	V	Κ	С	V	-	04	F	В	-	S	
	1		2	3	4	5	6		7	8	9		10	
 Pump series, Pump type G Series M : Magnetic drive 	2	4	K : 5	SiC/SiC	als ^{Note1} specifi	cation		7		outpu 0.4kW 0.75kW			1	O Special specifications ^{Note3} S: Other special specifications
 Pump size 15 : 3.3mL/rev 25 : 12.8mL/rev 		5	Bearin C:C K:S	arbon				8		type P Inver r IE3 m				
 3 Material of body V : PVC X : Special specificatio 	n	e	Mate V : F E : E		O-ring			9		xplosic	on-pr	oof, o		or type ed, outdoor type

Note1: Materials of the pinion/internal gear. Note2: For IE3 motors, use the inverter.

Note3: When transferring hydrochloric acid, be sure to select the SiC shaft (special order).

Construction and Materials

Mode	els	GM-15V	GM-25V
1	Housing (Pump body)	P	VC
2	Rear casing	CFR	ETFE
3	Magnet capsule	PVC	CFRETFE
4	Pinion/Internl gear	SiC	/SiC
5	Spindle (GM-25V type)	-	Alumina ceramic (Bearing: carbon) or SiC (Bearing: SiC)
6	Shaft ^{Note}	Si3N4 (Sili	con nitride)
7	Bearing for gear	SiC or High d	lensity carbon
8	Bearing for pump shaft	SiC only or SiC and High density carbon	SiC or High density carbon
9	Key	P	VC
10	Parallel pin	Alumina	a ceramic
11	Spacer (GM-15V type)	Fluorine resin with filler	-
12	O-ring	FKM o	r EPDM

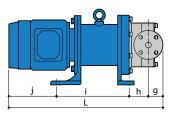
With carbon fiber filling.

• Keys are custom-ordered, and PPS is also available.

Note: When transferring hydrochloric acid, be sure to select the SiC shaft (special order).

Specifications (60Hz)

Models	Discharge per revolution mL/rev	Max. Capacity L/min	Max. Speed min ⁻¹	Max. discharge pressure MPa	Connections	Motor kW
GM-15V-04F	3.3	5.9	1900	0.5	JIS10K15A	0.4 General purpose flange motor
GM-25V-07F	12.8	23.0	1800	0.5	JIS10K20A	0.75 General purpose flange motor


• Conditions of liquid to be handled : Temperature = 0 to 50°C/Viscosity = 0.5 to 50 mPa • S/No slurry can be handled.

Standard Pumps Selection Table (6 to 60Hz)

	Grand				Capacity L/min			
Models	Speed min⁻¹	Viscosity			Discharge p	ressure MPa		
	11111	mPa•s	0	0.1	0.2	0.3	0.4	0.5
		0.5		0.05 to 3.9	0.05 to 1.9		-	
	180 to 1800	1	0.6 to 5.9	0.05 to 4.5	0.05 to 3.1	0.05 to 1.7	0.05 to 0.3	-
GM-15VK□□-04F□	180 10 1800	3		0.05 to 5.1	0.05 to 4.3	0.05 to 3.5	0.05 to 2.7	0.05 to 1.9
		50		0.4 to 5.7	0.2 to 5.5	0.05 to 5.3	0.05 to 5.1	0.05 to 4.9
		0.5		0.1 to 19.6	0.1 to 16.2	0.1 to 12.8	0.1 to 9.4	0.1 to 6.0
	100 to 1000	1	2 2 40 22 0	0.1 to 20.6	0.1 to 18.2	0.1 to 15.8	0.1 to 13.4	0.1 to 11.0
GM-25VK□□-07F□	180 to 1800	3	2.3 to 23.0	0.9 to 21.6	0.1 to 20.2	0.1 to 18.8	0.1 to 17.4	0.1 to 16.0
		50	-	2.0 to 22.7	1.7 to 22.3	1.3 to 22.0	1.0 to 21.6	0.6 to 21.3

• The flow-rate values given in the above table are for a liquid temperature of 20°C. Flow rates vary with liquid characteristics and temperatures. Please contact us for details. • To protect pump, install a strainer and relief valve. Please contact us for information.

Dimensions in mm

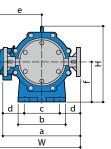
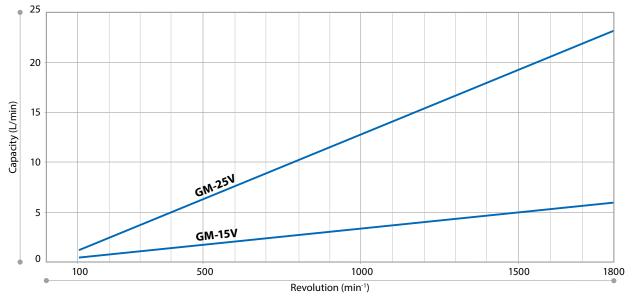
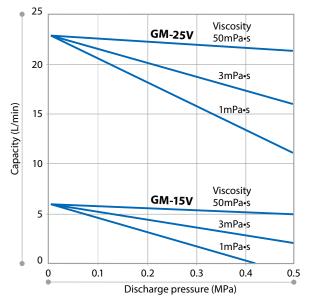
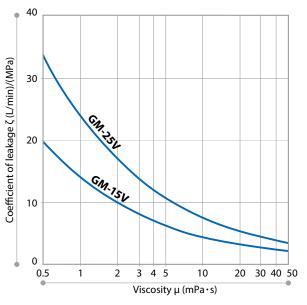



Illustration shows model GM-25VK□□-07FC

Models	W	Н	L	а	b	с	d	e	f	g	h	i	j	Mass kg
GM-15V-04F	234	188.3	424	197	128	98	49.5	151	95	47.5	34.8	158.5	183	20
GM-25V-07F	292	257.5	518	254	170	130	62	165	135	50	71	250	147	37

• All dimensions are for Mitsubishi Electric outdoor motors. Dimensions may differ if other motors are installed.


Capacity/Revolution


[•] Below 100 min⁻¹, the capacity is not linearly related to the revolution especially for a viscous liquid. Please contact us for further details.

Discharge pressure/Capacity

(Speed: 1800 min⁻¹, Temperature: 20°C)

Viscosity/Leakage Coefficient

When discharge pressure rises

The lower the viscosity, as discharge pressure rises, the lower the output will be. You can estimate the actual output, in case of a change in viscosity or discharge pressure, from the following formula.

 $Qc = q \times N/1000 - \zeta \times \Delta P$

 $\boldsymbol{\zeta} = \mathbf{K} \times \boldsymbol{\mu}^{-0.65} - (1)$

Qc: Estimated output (L/min) q: Output per revolution (mL/rev) N: min-1

 ΔP : Effective differential pressure (MPa) ζ : Coefficient of leakage (L/min)/(MPa)

μ: Viscosity (mPa•s) K: Constant GM-15V: K=14

GM-25V: K=24

When calculating the Expected RPM level

Expected RPM level can be obtained from required flow as follows.

 $NC = (Q + \zeta \times \Delta P) 1000/q$

Nc: expected speed of revolution (min⁻¹) Q: required flow rate (L/min)

For the value of the coefficient of leakage in formula (1), stee the viscosity-leakage coefficient graph.

Since the catalog values are theoretical values derived from the results obtained using our test equipment, they may not be satisfied depending on the environment and conditions, and we do not guarantee the values.

Since PVC is used as the material of the pump body, changes in air temperature and liquid temperature, frictional heat on the gear sliding surface, uneven tightening of bolts, tilted mounting, etc. The performance may fluctuate due to expansion/contraction/change of the housing. Therefore, there is no fixed-quantity injection capability of the pump alone. Be sure to introduce a pulseless dosing system when pulseless dosing is required.

Optional Accessories

Relief Valve RV

When the pressure in the piping rises above the set pressure, a relief valve opens to release the pressure.

• Always install the relief valve to prevent overpressure in the discharge line.

Back Pressure Valve BV

Install a back pressure valve when the pressure difference between the discharge side and suction side (differential pressure) is small.

• The valve maintains constant pressure over a wide range of flow rate control.

Y Type Strainer

Install a Y type strainer in the suction piping to prevent dirt and foreign matter from entering the pump chamber.

• The appropriate mesh number for the filter varies depending on the type of liquid. Please contact us for information.

European Headquarter	IWAKI Europe GmbH	TEL: (49)2154 9254 0	FAX: (49)2154 9254 48	U.S.A.	IWAKI America Inc.	TEL: (1)508 429 1440	FAX: (1)508 429 1386
Germany	IWAKI Europe GmbH	TEL: (49)2154 9254 50	FAX: (49)2154 9254 55	Brazil	IWAKI Do Brasil Comercio De Bombas Hidraulicas LTDA.	TEL: (55)19 3244 5900	FAX: (55)19 3244 590
The Netherlands (Netherlands Branch)	IWAKI Europe GmbH	TEL: (31)74 2420011	FAX: (49)2154 9254 48	China (Shanghai)	IWAKI Pumps (Shanghai) Co., Ltd.	TEL: (86)21 6272 7502	FAX: (86)21 6272 692
taly (Italy Branch)	IWAKI Europe GmbH	TEL: (39)0445 561219	FAX: (39)0445 569088	China (Hong Kong)	IWAKI Pumps Co., Ltd.	TEL: (852)2607 1168	FAX: (852)2607 1000
Spain (Spain Branch)	IWAKI Europe GmbH	TEL: (34)934 741 638	FAX: (34)934 741 638	China (Guangzhou)	GFTZ IWAKI Engineering & Trading Co., Ltd.	TEL: (86)20 84350603	FAX: (86)20 84359181
Poland (East Europe Branch)	IWAKI Europe GmbH	TEL: (48)12 347 0755	FAX: (48)12 347 0900	Singapore	IWAKI Singapore Pte Ltd.	TEL: (65)6316 2028	FAX: (65)6316 3221
Denmark	IWAKI Nordic A/S	TEL: (45)48 242345		Indonesia (Indonesia Office)	IWAKI Singapore Pte Ltd.	TEL: (62)21 6906606	FAX: (62) 21 6906612
Finland	IWAKI Suomi Oy	TEL: (358)10 201 0490		Malaysia	IWAKIm SDN. BHD.	TEL: (60)3 7803 8807	FAX: (60)3 7803 4800
Norway	IWAKI Norge AS	TEL: (47)23 38 49 00		Korea	IWAKI Korea Co.,Ltd.	TEL: (82)2 6238 4800	FAX: (82)2 6238 4801
Sweden	IWAKI Sverige AB	TEL: (46)8 511 72900		Taiwan	IWAKI Pumps Taiwan Co., Ltd.	TEL: (886)2 8227 6900	FAX: (886)2 8227 681
Belgium	IWAKI Belgium N.V.	TEL: (32)13 670200	FAX: (32)13 672030	Thailand	IWAKI (Thailand) Co.,Ltd.	TEL: (66)2 322 2471	FAX: (66)2 322 2477
France	IWAKI France S.A.	TEL: (33)1 69 63 33 70	FAX: (33)1 64 49 92 73	Australia	IWAKI Pumps Australia Pty Ltd.	TEL: (61)2 9899 2411	FAX: (61)2 9899 2421
Caution for safety	y use:	manual carofully to u	so the product correc	the second second	fer from the photos. Specifications and dimensions are su	1:	()Country coo